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Time discretization without saturation, i.e., the discretization automatically accounting for the smoothness of
the solution of the problem studied, is considered. As an example, a heat conduction equation is used, but the
method is applicable to any nonstationary problem, such as where the discrete operator operating on spatial
variables has a full system of eigenvectors and the eigenvalues are real.
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Introduction. In [1], numerical algorithms without saturation for solving the stationary problems of mathe-
matical physics are considered. In the present investigation these results are extended to nonstationary problems. Nu-
merical algorithms without saturation were suggested by K. I. Babenko at the beginning of 70s of the last century [2]
(the second augmented edition was published in 2002). At the present time the most widespread method for solving
problems of the mechanics of a deformable solid body is the method of finite elements. Its drawbacks are well known:
in approximating the displacement by a piecewise linear function we obtain rupture stresses. At the same time, it
should be noted that the majority of the problems of the mechanics of a deformable solid body is described by ellip-
tic-type equations that have smooth solutions. It seems of current interest to develop algorithms that could allow for
this smoothness. Many-years use of this technique by the present author for elliptical eigenvalue problems has proved
their high efficiency.

For example, an eigenvalue problem for the zero Bessel equation was considered: on a grid consisting of 23
nodes the first eigenvalue of this problem was found with 28 decimal places. In contrast to the classical difference
methods and finite-element method, where the dependence of the speed of convergence on the number of nodes of the
grid is exponential, here there is an exponential decrease of an error.

However, up to now only stationary problems have been analyzed. Below, this gap is being filled. In [3], a
one-dimensional heat conduction equation is investigated; in the present work a two-dimensional heat conduction equa-
tion is considered. First, we will describe the problem in which a nonlinear heat conduction equation with variable co-
efficients appears. This is the problem of gas percolation in a porous medium. The sought-for equation has the form

∂ (ερ)
∂t

 + div (ρv) = 0 , (1)

where ε for real beds has a value within the range 0.15–0.22; ερ is the concentration. Equation (1) is derived from
the ordinary mass conservation law:

d
dt

   ∫ 
Vpor

  ρdτ = 
d
dt

 ∫ 
V

ρεdτ = 0 , (2)

where both volumes are immobile. From Eq. (2), with the aid of differentiation with respect to a mobile volume [4],
we obtain

∂ (ερ)
∂t

 = div (ερw) ,   v = εw ,
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as a result of which we arrive at Eq. (1).
The Darcy law (1856) is valid for slow motions of a liquid in an isotropic porous medium, i.e., for small val-

ues of Re (Re < Recr):

v = − 
κ
μg

 grad p . (3)

For real porous media κ = 100–1000 mD. The permeability is a geometric characteristic of a porous medium, i.e., it
is determined by the dimensions of particles, their shape, and packing. The equation of state has the form ρ =
Mg

RT
 

p

z(p)
, and z(p) is determined experimentally (z(p) = 1 for a perfect gas, i.e., a barotropic one). Equation (1) relates

to the case where there are no gas sources in a bed (wells). In the general case the continuity equation has the form

∂ (ερ)
∂t

 + div (ρv) = f (z, t) ,   z � G , (4)

where f(z, t) is the given function; G is the two-dimensional region with a smooth boundary ∂G � C∞. Let z = ϕ(ζ)
= r exp (iθ) be the conformal mapping of a single circle onto the region G. We will write out Eq. (4) in new vari-
ables [4]:

ds
2
 = (dr

2
 + r

2
dθ2) ⏐ϕ′ (ζ)⏐

2
 � g11 = ⏐ϕ′ (ζ)⏐

2
 ,   g22 = r

2
 ⏐ϕ′ (ζ)⏐

2
 ,   √⎯⎯g  = ⏐ϕ′ (ζ)⏐

2
 r ,

grad p⏐r = 
1

⏐ϕ′ (ζ)⏐
 
∂p
∂r

 ,   grad p⏐θ = 
1

⏐ϕ′ (ζ)⏐ r
 
∂p
∂θ

 .

Substituting the components of the gradient into Eqs. (3) and (4), we obtain

∂ (ερ)
∂t

 = ⏐ϕ′ (ζ)⏐
−2

 L (w) + f (ζ, t) ,   ζ = r exp (iθ) ,   0 ≤ r ≤ 1 ,   0 ≤ θ < 2π ,   ⏐ζ⏐ ≤ 1 ; (5)

L (w) = 
1

r
 
∂

∂r
 
⎛
⎜
⎝
rκ (r, θ) ∂w

∂r

⎞
⎟
⎠
 + 

1

r
2 

∂

∂θ
 
⎛
⎜
⎝
κ (r, θ) ∂w

∂θ

⎞
⎟
⎠
 . (6)

Here ε = ε(r, θ); p = p(r, θ, t); κ = κ(r, θ, p) = κ(r, θ)ψ(p); μg = μg(p); w(p) = ∫ ρ(p)ψ(p)
μg(p)

 dp. Thus, the expressions

(5) and (6) represent the sought-for formulation of the percolation problem. These equations should be supplemented
with the boundary condition

∂p
∂n

⎪
⎪
⎪∂G

 = 0 , (7)

which means the absence of a gas flow through the boundary of the region ∂G (this follows from Eq. (3)). Note that
the function w also satisfies this boundary condition. Thus, the problem of gas percolation in a porous medium is re-
duced to a nonlinear heat conduction equation with variable coefficients, but in the present work we will consider only
a linear heat conduction equation with variable coefficients.

Discretization of a Two-Dimensional Problem over Spatial Variables. For the discretization of problem
(5)–(7) we will first perform discretization of the operator L(w). We will consider the spectral problem

L (w) + λw = 0 ,   
∂w
∂r

⎪
⎪
⎪r=1

 = 0 . (8)
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Note that − ∫ 
|ζ|≤1

L(w)wdζ = ∫ 
|ζ|≤1

  
⎡
⎢
⎣
κ
⎛
⎜
⎝

∂w

∂r

⎞
⎟
⎠

2

 + 
κ
r2

⎛
⎜
⎝

∂w

∂θ

⎞
⎟
⎠

2⎤
⎥
⎦
dζ. Thus, the boundary-value problem (8) is equivalent to the following

extreme problem:

J (w) =   ∫ 
|ζ|≤1

   
⎡
⎢
⎣
κ 

⎛
⎜
⎝

∂w

∂r

⎞
⎟
⎠

2

 + 
κ
r
2 
⎛
⎜
⎝

∂w

∂θ

⎞
⎟
⎠

2

 − λw
2⎤
⎥
⎦
 dζ → min . (9)

In fact, δJ (variation of the functional J) is the principal linear part of the increment J(w + h) − J(w), whence we ob-
tain

δJ = 2  ∫ 
|ζ|≤1

   
⎡
⎢
⎣
κ wrhr + 

κ

r
2 wθhθ − λwh

⎤
⎥
⎦
 dζ 

= 2 
⎧
⎨
⎩
κrwrh⏐r=1 −   ∫ 

|ζ|≤1

  
⎡
⎢
⎣

1

r
 
∂
∂r

 (rκwr) + 
1

r
2 

∂
∂θ

 (κwθ) + λw
⎤
⎥
⎦
 hdζ

⎫
⎬
⎭
 = 0 .

Since h is an arbitrary function, we obtain relations (8). Thus, in searching for the minimum of functional (9) there is
no need to satisfy the Neumann boundary-value condition beforehand, i.e., this boundary-value condition is natural. For
the discretization of functional (9) we will apply the quadrature formula:

   ∫ 
|ζ|≤1

   F (ζ) dσ = ∑ 
ν,l

cνlFνl ,   Fνl = F (rν exp (iθl)) ,

rν = 0.5 + 0.5 cos 
(2ν − 1) π

2m
 ,   ν = 1, 2, ..., m ;   θl = 

2πl
N

 ,   l = 0, 1, ..., 2nθ ;   N = 2nθ + 1 .

(10)

It is obtained after replacement of the function under integral by an interpolation formula for the function of two vari-
ables in the circle:

(PMp
F) (r, θ) = ∑ 

l=0

2nθ

  ∑ 
ν=1

m

  FνlLνl (r, θ) ,   Fνl = F (rν, θl) ,

Lνl (r, θ) = 
Tm (2r − 1)

NTm
′  (2rν − 1) (r − rν)

 Dnθ
 (θ − θl) ;   Dnθ

 (θ) = 0.5 + ∑ 
k=1

nθ

cos kθ ;   Tm (x) =cos (m arccos x) .

(11)

The interpolation equation (11) possesses the needed properties. Indeed, it is exact on polynomials of two
variables of degree ω = min (n, m − 1). We will designate the set of these polynomials by Pω, and Eω will designate
the best approximation of the function F � C[D] (D is the single circle) by the polynomial of Pω. This will determine
the projector

PMp
C [D] → L

Mp ,   L
Mp = L (L1, ..., LMp

) ,

where L1, ..., LMp
 are the fundamental functions of the interpolation formula (11) numbered by the same index. The

following classical inequality is valid:

⏐F (r, θ) − (PMp
F) (r, θ)⏐ ≤ (1 + ⏐PMp

⏐∞) E∞ (F) , (12)
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in which ⏐PMp⏐∞ is the norm of the projector PMp
. Just as in a one-dimensional case, inequality (12) shows that the

corresponding interpolation formula has no saturation. The norm of the projector PMp
 satisfies the relation ⏐PMp⏐∞ =

O(ln2 Mp); moreover this estimate can be easily refined. Making some assumptions on the smoothness of the class of
interpolated functions, one can estimate the rate of decrease of the best approximation of Eω for Mp → ∞ and obtain
specific estimates of the error of the interpolation formula (11). Let F(r, θ) = (PMp

F)(r, θ) + ρMp
(r, θ; F), where

ρMp
(r, θ; F) is the error of the interpolation formula (11) (residual). Then the following theory advanced by K. I. Ba-

benko [2, pp. 238–239] is valid.

T h e o r  e m 1. Let the class of functions H∞
Mp(K; D) � C(D) in the circle D satisfy the conditions

⎪
⎪
⎪

∂k+1F

∂xk∂y1

⎪
⎪
⎪
 ≤ K, k + 1 ≤ μ. Then, if F � H∞

Mp(K; D), then

⏐ρM (. ; F)⏐∞ ≤ cμKMp
−μ ⁄ 2 log

2
 Mp , (13)

where cμ is a constant depending on μ.
Thus, from consideration of Eq. (13) it is seen that at the same number of nodes of the interpolation of Mp

the rate of a decrease of the error of interpolation formula (11) increases with μ, i.e., with increase in the smoothness
of the interpolated function F. This means that the interpolation formula obtained has no saturation.

Based on the interpolation formula (11), one can easily construct a quadrature formula for calculating certain
integrals, when a circle is the region of integration. Actually, replacing the integrand by expression (11), we obtain the

quadrature formula (10), where dσ is an element of the area; cνl are the weight coefficients, and δ(F) is the error;

cνl = ∫ 
D

Lνl(r, θ)dσ. In this case, cνl is independent of l. We will introduce into consideration the block-diagonal matrix

C = diag (c1, c2, ..., cm), where cν (ν = 1, 2, ..., m) are the diagonal matrices of size N × N with identical numbers

on the diagonal. For the error of the quadrature formula we have the following estimate:

⏐δ (F)⏐ ≤ 2πEω (F) .

Note that all cνl are positive at a large enough number of interpolation nodes. For the coefficients of the quadrature
formula (10) we have the expression

cν = 
2π

N
 
⎧
⎨
⎩

(− 1)m+1
 − 1

(m2
 − 1) m (− 1)ν−1

 sin θν + 
rν

m
 
⎛
⎜
⎝
1 + 2  ∑ 

l=2(2)

m−1

 
cos lθν

1 − l
2

⎞
⎟
⎠

⎫
⎬
⎭
 ,   rν = 

cos + θν

2
 ,   θν = 

(2ν − 1) π

2m
 .

Next, we introduce formulas for  numerical differentiation with respect to r and θ:

⎛
⎜
⎝

∂w
∂r

⎞
⎟
⎠ζ=ζνl

 = ∑ 
μ=1

m

Dνμ
(r)

wμl ,   
⎛
⎜
⎝

∂w
∂θ

⎞
⎟
⎠ζ=ζνl

 = ∑ 
p=1

N

B
~

lpwνp .

The matrices B
~

 and D(r) have been obtained by differentiation of the altered interpolation formula (11). Over
r, the interpolation formula that at r = 1 satisfies the Neumann boundary-value problem has been applied

Pm (x; F) = ∑ 
j=1

m

 

⎡

⎢

⎣

⎢
⎢

⎢
⎢

Tm (x)

m 
(− 1)j−1

sin θj
 (x − xj)

 − AjTm (x)

⎤

⎥

⎦

⎥
⎥

⎥
⎥

 Fj ,   xj = cos θj ;   

θj = 
(2j − 1) π

2m
 ,   j = 1, 2, ..., m ;   x = 2r − 1 ;
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Aj will be selected so as to satisfy the boundary-value condition F′(1) = 0.
With the aid of the quadrature formula (10), functional (9) will be transformed into a quadratic form:

J (w) = ∑ 
ν,l

cνl 
⎡
⎢
⎣
kνl 

⎛
⎜
⎝

∂w

∂r

⎞
⎟
⎠ζ=ζνl

2

 + 
kνl

rν
2  

⎛
⎜
⎝

∂w

∂θ

⎞
⎟
⎠ζ=ζνl

2

 + λwνl
2 ⎤
⎥
⎦
 , (14)

where kνl = κ(rν, θl) is the value of the function κ at the node of the grid. Differentiating (14) with respect to wμ~l
~,

we obtain

  ∑ 
p=1

N

Bν~l
~
,p

∗
wν~p + ∑ 

μ=1

m

Aν~l
~
,μ

∗
wμl

~ = λcν~wν~l
~ ,

where   Bν~l
~
,p

∗  = 
c~ν

r~ν
2  ∑ 

l=1

N

kν~lB
~

lpB
~

ll
~ ;   Aν~l

~
,μ

∗  = ∑ 
ν=1

m

cνkνl
~Dνμ

(r)Dνν
(r) is the discrete analog of the eigenvalue problem

div (κ grad w) + λw = 0 ,   r < 1 ,   
∂w
∂r

⎪
⎪
⎪r=1

 = 0 .

Estimation of the error of the discretization described can be made using the scheme given in [1, 5].
Statement of the Problem. In a cylinder D = �⏐ζ⏐ ≤ 1, 0 ≤ t ≤ 1�, we will consider the heat conduction

equation

∂u (ζ, t)
∂t

 = ⏐ϕ′ (ζ)⏐
−2

 L (u) + f (ζ, t) = r exp (iθ) ,   0 ≤ r ≤ 1 ,   0 ≤ θ < 2π ,   ⏐ζ⏐ ≤ 1 ; (15)

u⏐t=0 = u0 (ζ) , (16)

∂u
∂n

⎪
⎪
⎪r=1

 = 0 . (17)

Without loss of generality, we may assume that u0(ζ) � 0. Otherwise, we will introduce a new unknown
function v(ζ, t) = u(ζ, t) − u0(ζ) which is the solution of the same boundary-value problem (15)–(17) but with a dif-
ferent right-hand side. The boundary condition (17) is satisfied, since it is fulfilled for the function u0(ζ).

Discretization in Time. For t we select a grid consisting of k nodes: tν = 
1
2

(zν + 1), zν = cos χν, χν = 
(2ν − 1)π

2k
,

ν = 1, 2, ..., k, and apply interpolation by a polynomial:

q (t) = ∑ 
ν=1

k
Tk (t) tqν

k 
(− 1)ν−1

sin χν
 tν (z − zν)

 . (18)

The quantities entering into Eq. (18) have been determined above. The values of the first derivative of u(ζ, t) over t
that enter into the left-hand side of relations (15) will be obtained by differentiation of the interpolation formula (18).
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Let A be the matrix of the discrete operator −⏐ϕ′(ζ)⏐
2L(u); then, by having designated uμν = u(ζμ, tν), μ =

1, 2, ..., Nt; ν = 1, 2, ..., k, we obtain 
∂u(ζμ, t)

∂t
 + ∑ 

p=1

Ni

Aμpu(ζp, t) = f(ζμ, t).

Let B be the matrix of numerical differentiation with respect to t over [0, 1]. As a result we obtain

∑ 
q=1

k

Bνquμq + ∑ 
p=1

Ni

Aμpupν = fμν. We will number the nodes of the grid by one index along the lines, i.e., the first index

I →(μ, ν) = (ν − 1)Nt + μ changes most rapidly. Then we obtain a discrete problem

(B ⊗ INt
 + Ik ⊗ A) u = f , (19)

where B is a matrix of size k × k — differentiation with respect to t; A is a matrix of size Nt × Nt — a discrete op-
erator −⏐ϕ′(ζ)⏐

−2L(u); INt
 and Ik are unit matrices. We will represent A in the form (see [1])

A = ∑ 
p

λphp ,   hp
2
 = hp ,   hphl = 0 ,   p ≠ l � ∑ 

p

hp = Im 

� B ⊗ ∑ 
p

hp + Ik ⊗ 
⎛
⎜
⎝

⎜
⎜
∑ 
p

λphp

⎞
⎟
⎠

⎟
⎟
 = ∑ 

p

(B + λpIk) ⊗ hp 

� (B ⊗ INt
 + Ik ⊗ A)−1

 = ∑ 
p

(B + λpIk)
−1

 ⊗ hp . (20)

Note that the operator −⏐ϕ′(ζ)⏐
−2L(u) is degenerate, i.e., it has a zero eigenvalue. In this case, one has to re-

verse the matrix of numerical differentiation, i.e., to approximately reverse the operator of differentiation. Even though
the matrix of numerical differentiation is degenerate, the reverse one exists; this is integration. For practical realization
of such an approach, we will introduce formulas for numerical integration of the function that would satisfy the
boundary-value condition u⏐t=0 = 0 over the segment [0, 1]. For t we will select a grid consisting of m nodes: rν =

1
2

(xν + 1), xν = cos θν, θν = 
(2ν − 1)π

2m
, ν = 1, 2, ..., m, x = 2r − 1, and apply the interpolation by a polynomial:

u (r) = ∑ 
ν=1

m
Tm (x) ruν

m 
(− 1)ν−1

sin θν
 rν (x − xν)

 .

Further we have

 ∑ 
ν=1

m
Tm (x) uν

m 
(− 1)ν−1

sin θν
 (x − xν)

 = 
2
m

 ∑ ′

l=0

m−1

 cos lθνTl (x) � u (r) = 
2
m

 ∑ 
ν=1

m

 
⎛
⎜
⎝

⎜
⎜
 ∑ ′

l=0

m−1

 cos lθνTl (x) 
r
rν

⎞
⎟
⎠

⎟
⎟
 uν .

To find ∫ 
0

r

u (r)dx, it is necessary to calculate the integral Il(r) = ∫ 
0

r

Tl(x)rdr, x = 2r − 1:

I0 (r) = 
r
2

2
 ;   I1 (r) = 

2
3

 r
3
 − 

r
2

2
 ;   I2 (r) = 2r

4
 − 

8
3

 r
3
 + 

1
2

 r
2
 ,
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l ≥ 3 ,    4Il (r) = 
x

2
Tl (x)

l + 2
 + 

xTl (x)

l + 1
 − 

xTl−1 (x)

l + 2
 − 

lTl−1 (x)

l
2
 − 1

 − 
Tl−2 (x)

l
2
 − 4

 + 
(− 1)l

l
2
 − 4

 − 
(− 1)l

l
2
 − 1

 .

The matrix of numerical integration has the form

Iμν
(r)

 = 
2
m

 ∑ ′

l=0

m−1

 
cos lθνIl (rμ)

rμ
 � ∫ 

0

rμ

u (r) dr = ∑ 
ν=1

m

Iμν
(r)

uν .

Thus, the solution of discrete problem (19) will be obtained by multiplying the matrix (20) by the vector of
the right-hand side. Note that to construct a matrix reciprocal of matrix (19) it is sufficient to reverse Nt matrices of
size k × k. We will also note that above we have nowhere used the specific feature of the matrix A, i.e., A can be the
matrix of a two-dimensional, three-dimensional, and of any other problem. It is only necessary that the matrix can
have the full system of eigenvectors and that the eigenvalues be real.

Numerical Example. As a numerical example we will consider problem (15)–(17) with the right-hand side:
f(t, r, ϕ)  = (r3 − 3r)3 cos ϕ + r(r2 − 3)t(r cos 2ϕ + cos ϕ) − �2(r cos ϕ + 1)[9r(r2 − 3)2(r2 − 1)t cos ϕ](r cos ϕ
+2)18[r(r3 − 3r)2 +(r2 − 1)(r3 − 3r)3(r2 − 1)]t cos ϕ� and with the function k(r, ϕ) = r cos (ϕ) + 2; then the solution u(t,
r, ϕ) = (r3 − 3r)3t cos ϕ. Let M be the number of points over the radius; N the number of points over θ (over the
circles of the grid); K the number of points in time; BNORM the norm of the matrix reciprocal of the matrix of a
discreet problem; BNORM the norm of the difference between an exact and approximate solutions. The results of cal-
culations are presented below.

M = 5 ,   N = 5 ,   K = 5 ;   BNORM = 2.23 ;   RNORM = 0.16 ;

M = 10 ,   N = 5 ,   K = 5 ;   BNORM = 2.26 ;   RNORM = 2.86⋅10
−2

 ;

M = 20 ,   N = 5 ,   K = 5 ;   BNORM = 2.29 ;   RNORM = 4.67⋅10
−3

 ;

M = 100 ,   N = 5 ,   K = 5 ;   BNORM = 2.40 ;   RNORM = 3.54⋅10
−4

 ;

M = 300 ,   N = 5 ,   K = 5 ;   BNORM = 2.61 ;   RNORM = 5.20⋅10
−5

 .

A further increase in the number of grid nodes is senseless, since the function κ = κ(r, θ) is assigned in the
program with a unary accuracy. Thus, to obtain a solution with one decimal place (an acceptable accuracy for inves-
tigation of the development of gas deposits), it is sufficient to take 75 nodes of a grid in a cylinder.

Theoretical Investigation of an Error. We will carry out this investigation on the example of a one-dimen-
sional problem. In a rectangle D = �0 ≤ x ≤ 1, 0 ≤ t ≤ 1� we will consider the heat conduction equation:

∂u (x, t)

∂t
 = 

∂2
u (x, t)

∂x
2  + f (x, t) ,   (x, t) � D ;   u⏐t=0 = u0 (x) ;   u⏐x=0 = u⏐x=1 = 0 . (21)

As has already been noted above, without loss of generality we may assume that u0(x) � 0.
Discretization of a One-Dimensional Problem. Over x we approximate the sought-for function u(x, t) by a

polynomial; for this purpose, over x we take a grid consisting of m1 nodes:

xμ = 
1
2

 (zμ + 1) ,   zμ = cos χμ ,   χμ = 
(2μ − 1) π

2m1
 ,   μ = 1, 2, ..., m1 ,

and apply the interpolation formula:
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q (x) = ∑ 
μ=1

m1 Tm1
 (x) (x − 1) xqk

m1 
(− 1)μ−1

sin χμ
 (xμ − 1) xμ (z − zμ)

 ,   qμ = q (xμ) ,   z = 2x − 1 . (22)

The second derivative with respect to x entering into Eq. (21) will be found by differentiation of the interpo-
lation formula (22). Over t we will select a grid consisting of k nodes:

 tν = 
1
2

 (zν + 1) ,   zν = cos χν ,   χν = 
(2ν − 1) π

2k
 ,   ν = 1, 2, ..., k ,

as well as apply interpolation by a polynomial:

q (t) = ∑ 
ν=1

k
Tk (t) tqν

k 
(− 1)ν−1

sin χν
 tν (z − zν)

 . (23)

The quantities entering into Eq. (23) have been determined above. The values of the first derivative at the nodes of
the grid from u(x, t) over t that enter into the left-hand side of relation (22) will be obtained by differentiation of the
interpolation formula (23).

The traditional methods of solving this problem are varied (see, e.g., [6]). The main drawback of the differ-
ence methods is that they are with saturation. Irrespective of the smoothness of a solution, the error of discretization
of the difference method in spatial variables is O(hp), where p is the order of the difference scheme. An analogous
statement is valid for discretization in time, e.g., for an explicit scheme of first order in time the error of discretization
in time is O(τ). The total error cannot be smaller than the maximum of these values.

In contrast to the difference methods, in the present work an approximation of the solution by polynomials is
applied. Let f(x) � C[a, b] be a continuous function and (Pn f)(x) be its interpolation polynomial. Thereby the projector
Pn: C → Ln has been determined, where Ln � C is the corresponding n-dimensional sub-space of polynomials. Then

⏐f (x) − (Pnf) (x)⏐ ≤ (1 + ⏐Pn⏐∞) En−1 (f) .

Here ⏐Pn⏐∞ is the norm of the projector and En−1(f) is the best approximation of the function f by polynomials of
degree not higher than (n − 1) in the norm C. Moreover, the nodes are selected so that ⏐Pn⏐∞  = O(ln (n)). According
to the Weierstrass theorem for each continuous function we have lim

n→∞
  En(y) = 0; the rate of a decrease in En(y) for

n → ∞ depends on the smoothness of the function y.
Thus, let y(x) be a continuous function given in the interval [−1, +1], Pn(x) be the polynomial of degree n

that deviates least from y(x) in the interval considered, and En(y) be the best approximation of y(x) by means of a
polynomial of degree n so that

En (y) = max
|x|≤1

  ⏐y (x) − Pn (x)⏐ ,

then the Jackson theorem holds [7, p. 296]:
T h e o r e m 2. If the function y(x) in the interval −1 ≤ x ≤ +1 has a continuous derivative y(p)(x) that sat-

isfies the Lipschitz condition

⏐y
(p)

 (x′) − y
(p)

 (x′′)⏐ < K ⏐x′ − x′′⏐ ,   (x′ ≠ x′′; ⏐x′⏐, ⏐x′′⏐ ≤ 1) ,

then for its best approximation by means of ordinary polynomials the inequality En(y) <
cpK

np+1
 (cp = 

cp+1(p + 1)p+1

(p + 1)!
,

n ≥ p + 1) is valid, where c is an absolute constant.
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Theorem 2 shows the rate of a decrease of the best approximation of En(y) depending on the smoothness of
the function y.

Thus, on the same grid (n is fixed) the considered approximation of the function is improved with increase in
the smoothness of the solution. Moreover, we may not know a priori the smoothness, but the method will adjust itself
to it. This is the crux of the methods without saturation suggested by K. I. Babenko.

A brief account of the principles of the theory of unsaturable numerical methods is contained in the first edi-
tion of the book by K. I. Babenko [2]. Note that investigations in the computational mathematics along these lines
have not been adequately propagandized and up to now are practically not known abroad. This is confirmed by the
fact that today there has begun factual "rediscovery" (evidently independent) of these very computational methods in
the West under the name of "spectral" methods (S. Orszag, D. Gotlieb, E. Tadmor, USA), as well as in the form of
the present-day (h–p) specializations of the method of finite elements (O. Widlund, USA and S. Schwab, Switzerland)
in which, on making meshes of a grid finer (i.e., when h → 0), the degree p of polynomials used in approximation of
functions inside one finite element increases simultaneously. We regret that by now the works of K. I. Babenko and
of his pupils have been practically forgotten.

Let A be the matrix of the discrete operator − 
d2

dx2; then, designating uμν = u(xμ, tν), μ = 1, 2, ..., m1, ν = 1,

2, ..., k, we obtain 
∂u(xμ, t)

∂t
 + ∑ 

p=1

m1

Aμpu (xp, t) = f(xμ, t). Let B be the matrix of numerical differentiation with respect to

t over [0, 1]. As a result we find

 ∑ 
q=1

k

Bνquμq + ∑ 
p=1

m1

Aμpupν = fμν . (24)

We will number the grid nodes by one index along the lines (i.e., the first index I → (μ, ν) = (ν − 1)m1 + μ
changes most rapidly). Then we obtain the discrete problem:

(B ⊗ Im1
 + Ik ⊗ A) u = f , (25)

where B is the matrix of size k × k — differentiation with respect to t; A is the matrix of size m1 × m1 — the second
differentiation with respect to x; Im1

 and Ik are single matrices. Next, proceeding as in derivation of Eq. (20), we obtain

(B ⊗ Im1
 + Ik ⊗ A)−1

 = ∑ 
p

(B + λpIk)
−1

 ⊗ hp . (26)

Thus, the solution of discrete problem (24) will be obtained by the multiplication of matrix (26) by the vector
of the right-hand side of f. Note that to construct a matrix reciprocal of (26) it is sufficient to reverse m1 matrices of
size k × k, where k is the number of the nodes of interpolation in time. We note also that nowhere was the specificity
of the matrix A used, i.e., A can be the matrix of a two-dimensional, three dimensional, and of any other problem. It
is only necessary that the matrix can have a full system of eigenvectors and that the eigenvalues be real.

To construct the discretization of the above-described problem, we had to differentiate the interpolation formu-
las. To estimate the error of this operation, there exists the following theorem [2].

T h e o r e m 3. Let f � W∞
n (M, I), 0 ≤ s < n, s be the whole number. Then

⏐f
 (s)

 (x) − p
(s)

 (x; f)⏐ ≤ M 
(b − a)n−s

(n − s)!
 ,   x � [a, b] .

The stability of numerical methods in the classical case is considered for the difference schemes [2, p. 763]
in the following way. We will assume that there exist two linear normalized spaces F and U such that the equation
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�u = f (27)

is solvable, and the solution is the single one for any element f � F and �−1F � U. The norms in these spaces are
designated by �⋅�U and �⋅�F.

In the region Ω we consider the grid of Ωh depending on the parameter h. We introduce the mappings of
Jh: U → Uh, Jh: u → uh, Ih: F → Fh, Ih: f → fh, where Uh and Fh are the finite-dimensional spaces, and we assume
that Fh contains all the grid functions on Ωh. On the grid functions we introduce two norms: �⋅�U and �⋅�F that obey
the conditions

lim
h→0

  ⏐⏐Jhu ⏐⏐Uh
 = ⏐⏐u ⏐⏐U ,   lim

h→0
  ⏐⏐Ihf ⏐⏐Fh

 = ⏐⏐f ⏐⏐F

for arbitrary u � U, f � F. Let

�hvh = fh (28)

be the discretization of Eq. (27).
The operator �h is well conditioned with the order ρ, if for any grid function νh

⏐⏐vh ⏐⏐Uh
 ≤ Mh

−p
 ⏐⏐�hvh ⏐⏐Fh

 .

We recall that the operator �h approximates the operator � with the order ω, if

⏐⏐Ih�u − �hJhu ⏐⏐Fh
 ≤ C (u) hω

 .

T h e o r e m (of Ryaben’kii–Filippov). If the operator �h approximates the operator � with the order ω
and is well conditioned with the order ρ, then for the solution of problem (27), (28) the following estimate is valid:

⏐⏐Jhu − vh ⏐⏐ Uh ≤ C1 (u) hω−ρ
 .

P r o p o s a l 1. ⏐u⏐∞ < ⏐f⏐∞ (see Eqs. (24)–(26)).
P r o o f of proposal 1. We easily obtain that this norm of matrix (26) does not exceed the maximum norm of

the matrices (B + λpIk)
−1 (these matrices are the analogs of eigenvalues). To construct these matrices, one does not need

to supply the procedure of numerical reversal. Note that in this case the differential operator on the left-hand side of the

relation y′ + ay = g(x) � y = exp (−ax)(c + ∫ g(x) exp (ax)dx) is reversed in our case: y(t) = ∫ 
0

t

g (x) exp (a(x − t))dx. Con-

sequently, ⏐y⏐∞ ≤ ⏐g⏐∞, since a > 0, which was to be proved.

Proposal 1 points to the stability of the considered algorithm of the solution of the one-dimensional heat con-
dition equation on its right-hand side. To investigate the stability over the initial data (in the case where they are
nonzero), we introduce the function

v (x, t) = u (x, t) − u0 (x) → 
∂v

∂t
 = 

∂2
v

∂x
2 + u0

′′ (x) + f (x, t) ,   v (0, t) = v (1, t) = 0 ,   v (x, 0) = 0 .

In a discrete form G
~ν = −e � Au0 + f, e = (1, 1, ..., 1)′ is the vector-column of dimensionality k, where the matrix

G
~

 has been defined on the right-hand side of relation (28).
P r o p o s a l 2. ⏐v⏐∞ < ⏐u0⏐∞ + ⏐f⏐∞.
P r o o f of proposal 2. We avail ourselves of the property of the Kronecker product [8, p. 20]:

(A
~

 � B
~

)(C
~

 � D
~

) = A
~

C
~

 � B
~

D
~

, as well as of the evident statement that hpA = λphp, from which the relation v =

− ∑
p

  [(B + λpIp)−1e] � λp(hpu0) + G
~−1f follows: the calculation of the product [(B + λpIp)−1e] is equivalent to the com-
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putation of the integral ∫
0

t

 exp (a(x − t))dx = 
1
a

(1 − exp (−at)) < 
1
a

 at a > 0, a = λp (see also the proof of proposal 1).

From this and proposal 1, the proof of proposal 2 follows.
We will consider an example. Let u0(x)  = x(x − 1) and the right-hand side f(x, t) = (cos t − π2 sin t)

× sin πx + 2, then u(x, t) = sin (πt) sin (πx) + x(x − 1). We introduce the new function v(x, t) = u(x, t) − x(x − 1); then
v(x, 0) = 0, and the right-hand side of heat conduction equation (22) is F(x, t) = (cos t − π2 sin t) sin (πx). Conse-
quently, the problem can be solved by the technique described above for the heat conduction equation with zero initial
conditions. This example was considered in [3]. On a 5 × 5 grid five decimal places have been obtained.

Conclusions. From the arguments given it follows that a multilayer, implicit, unconditionally stable method
without saturation has been obtained for solving nonstationary problems of mathematical physics. The discrete operator
over spatial variables must have a full system of eigenfunctions, and the corresponding eigenvalues must be real. The
stability can be guaranteed for negatively determined operators.

This work was carried out with financial support from the Russian Foundation of Basic Research, project No.
09-08-00011-a.

NOTATION

A, matrix of a discrete operator over spatial variables, of size m1 × m1 for a one-dimensional problem and of
size Nt × Nt for a two-dimensional problem; B, matrix of numerical differentiation with respect to time, of size k × k;
B
~

, matrix of numerical differentiation with respect to θ of a two-dimensional interpolation formula, of size N × N, N =
2nθ + 1; D, square �0 ≤ x ≤ 1, 0 ≤ t ≤ 1�; D(r), matrix of numerical differentiation with respect to r of a two-dimen-
sional interpolation formula, of size m × m; f(z, t), density of gas sources, kg ⁄ (m2⋅sec); G, region in which gas perco-
lation is considered; ∂G, boundary of region G; k, number of nodes of interpolation in time; L, two-dimensional
differential operator standing on the right-hand side of percolation equation; m, number of nodes over the radius in
two-dimensional interpolation; m1, number of nodes over spatial variable in a one-dimensional problem; Mp, number of
nodes of interpolation in the region considered; N, number of nodes over θ in two-dimensional interpolation, N =
2nθ + 1; Ntm × N, number of nodes of interpolation in a two-dimensional region; nθ, N = 2nθ + 1; p, pressure, Pa; r,
polar coordinate in a circle of single radius, m; R, universal gas constant, J ⁄ (K⋅mole); Re, Reynolds number; T, abso-
lute temperature, K; t, time, sec; v, percolation velocity, m ⁄ sec; Vpor, volume of pores, m3; V, total volume, m3; w,
gas velocity, m ⁄ sec; ε, porosity; κ, permeability, D (1D = 10−8 ⁄ 0.981 cm2; μg, dynamic viscosity of a gas, Pa⋅sec;
ρ, density, kg ⁄ m3; ϕ(ζ), function assigning conformal mapping of a circle of single radius ⏐ζ⏐ ≤ 1 onto the region G
considered. Subscripts: cr, critical; g, gas; p, point; por, porous.
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